Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models
نویسندگان
چکیده
In this work, we demonstrate that applying deep generative machine learning models for lattice field theory is a promising route solving problems where Markov Chain Monte Carlo (MCMC) methods are problematic. More specifically, show can be used to estimate the absolute value of free energy, which in contrast existing MCMC-based limited only energy differences. We effectiveness proposed method two-dimensional $\phi^4$ and compare it detailed numerical experiments.
منابع مشابه
Deep Directed Generative Models with Energy-Based Probability Estimation
Energy-based probabilistic models have been confronted with intractable computations during the learning that requires to have appropriate samples drawn from the estimated probability distribution. It can be approximately achieved by a Monte Carlo Markov Chain sampling process, but still has mixing problems especially with deep models that slow the learning. We introduce an auxiliary deep model...
متن کاملUnified Approach to Thermodynamic Bethe Ansatz and Finite Size Corrections for Lattice Models and Field Theories
We present a unified approach to the Thermodynamic Bethe Ansatz (TBA) for magnetic chains and field theories that includes the finite size (and zero temperature) calculations for lattice BA models. In all cases, the free energy follows by quadratures from the solution of a single non-linear integral equation (NLIE). [A system of NLIE appears for nested BA]. ⋆ mail address: Dipartimento di Fisic...
متن کاملmetallicity of starburst galaxies in chandra deep field south (cdf-s) , at 0.5
چکیده یکی از پارامترهای اصلی در دنبال کردن تاریخچه ی تشکیل ستاره ها و تحول کهکشان ها، مطالعه ی میزان فراوانی عناصر آن ها است. در این پایان نامه برای مطالعه ی همبستگی میان فراوانی فلزی و جرم ستاره ای کهکشان ها، از داده های طیفی 89 کهکشانِ ستاره زا استفاده شده است. طیف ها توسط طیف نگار فورس2 از میدان ژرف جنوبی چاندرا گرفته شده و جابه جایی به سرخ طیف ها همه بزرگتر از نیم و کوچکتر از یک هستند. جر...
15 صفحه اولLearning Deep Generative Models
Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that ...
متن کاملAuxiliary Deep Generative Models
Deep generative models parameterized by neural networks have recently achieved state-ofthe-art performance in unsupervised and semisupervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave the generative model unchanged but make the variational distribution more expressive. Inspired by the structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2021
ISSN: ['1079-7114', '0031-9007', '1092-0145']
DOI: https://doi.org/10.1103/physrevlett.126.032001